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Abstract. Proper lattices for the discrete BKP and DKP equations are determined. Linear
Bäcklund transformation equations for the discrete BKP and DKP equations are constructed, which
possess the lattice symmetries and generate auto-Bäcklund transformations.

1. Introduction

The discrete counterpart of the KP equation, known as the discrete KP equation or Hirota
bilinear difference equation (HBDE) [4, 5, 8], plays a central role in the study of integrable
nonlinear systems. It embodies an infinite number of integrable differential equations. It is
satisfied by the string correlation function in particle physics [2], and is also satisfied by the
transfer matrices of some solvable lattice model [9].

The equation possesses the auto-Bäcklund transformation which acts on the solutions of
the discrete KP equation and turns the n-soliton solution into the (n + 1)-soliton solution [8].
This transformation is generated by a pair of linear equations which I call the linear Bäcklund
transformation equations (LBTE) in this paper. They also play an important role in the study
of integrable systems. They are the Lax pair of the discrete KP equation, and generate the
Bethe ansatz solution of some solvable lattice model [2].

On the other hand, from consideration of the structure of the discrete KP equation, the
dependent variables of the discrete KP equation are believed to reside on a face centred cubic
(FCC) lattice. Indeed, the discrete KP equation does not change its form under rotation of the
FCC lattice. However, the LBTE to the discrete KP equation changes those forms under that
rotation.

In a previous paper [1], the LBTE are extended to possess the lattice symmetry, which I
call the symmetric LBTE in this paper, and the following results are obtained. The extended
equations were arranged in the form matrix × vector = 0 by considering the lattice symmetry.
The condition that the extended equations have nontrivial solutions, i.e. vanishing of the
determinant of the matrix, is just the discrete KP equation. Furthermore, the extended equations
were generalized to higher dimensions due to the lattice symmetry itself.

On the one hand, comparing with the KP hierarchy which possesses A∞-type Lie group
symmetry acting on the space of solutions [5], there are integrable hierarchies which possess
theB∞ orD∞ Lie group symmetries [3,6]. Such hierarchies are known as the BKP, fermionic
BKP and DKP hierarchies. For these hierarchies, one can find discrete equations corresponding
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to the discrete KP equation by considering the infinite-dimensional symmetry behind them.
What happens when one corresponds proper lattices to the discrete equations, and considers
the lattice symmetry of the LBTE to these discrete equations?

In this paper, I show the following results obtained by considering the above question.
First, proper lattices are determined by comparing the type of the infinite-dimensional

symmetries and the dimensions of the discrete equations. The discrete equations are invariant
under rotation of the lattices.

Second, the LBTE to the discrete equation which possesses the lattice symmetry are
constructed. The LBTE can be represented by the functions on the vertices of some regular
polyhedrons in the lattice.

Third, only the discrete equation is derived from the consistency condition for the LBTE,
when one considers the following two types of consistency conditions. One condition is the
determinant-type consistency condition explained above, and the other is a condition similar
to the compatibility condition for the Lax pair, which is called the compatibility-type condition
in this paper. In some cases, the LBTE cannot be arranged in the form matrix × vector = 0,
however, in such cases, the compatibility-type condition becomes just the discrete equation.
Furthermore, by considering these two types of conditions, one can check that the LBTE
generates the auto-Bäcklund transformation for the discrete equation.

After explaining the main ideas behind the method for the case of the KP hierarchy in
section 2, I show the above results in the case of the BKP, fermionic BKP and DKP hierarchies
in sections 3 and 4.

2. The KP hierarchy case

TheA∞ symmetry space of solutions to the KP hierarchy allows one to deal with this hierarchy
in a simple form [7]. This section is devoted to summarizing some results obtained in our
previous paper [1], concerning the discrete formula for the KP hierarchy and its LBTE.

The lowest-dimensional discrete formula belonging to the KP hierarchy, known as the
discrete KP equation, is a three-dimensional equation [4, 5, 8] (also see the appendix). The
equation is the most fundamental equation among the discrete formulae for the KP hierarchy,
in the sense that higher-dimensional discrete formulae can be decomposed into it. The discrete
KP equation is presented as follows:

z12z34f (k1 + 1, k2 + 1, k3, k4)f (k1, k2, k3 + 1, k4 + 1)

−z13z24f (k1 + 1, k2, k3 + 1, k4)f (k1, k2 + 1, k3, k4 + 1)

+z14z23f (k1 + 1, k2, k3, k4 + 1)f (k1, k2 + 1, k3 + 1, k4) = 0. (1)

Here, zij is

zij = zi − zj (2)

and zi(i = 1, 2, 3, 4) are arbitrary complex constants. The equation seems to be defined on
a four-dimensional lattice space. However, since the sum of the four variables does not vary
in the equation, the equation is actually a three-dimensional equation. Indeed, the following
variable transformation allows one to represent the equation using three variables:

p = k1 q = k2 r = k3 n = k1 + k2 + k3 + k4. (3)

First, I seek the proper lattice for the discrete KP equation. To find it, I relate a regular
polyhedron to the discrete KP equation, and join the polyhedrons. The proper polyhedron is
considered to be a octahedron, because the equation connects f at six points. In fact, when
one considers the four variables to be orthogonal, the equation takes the form of a summation
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of the products of f on one vertex of the octahedron and another f on the opposite side vertex.
By joining octahedrons, a FCC lattice is constructed. Thus, the proper lattice for the discrete
KP equation turns out to be a FCC lattice.

It is known that there exist equations which generate the Bäcklund transformation [2, 8].
In a previous paper [1], the equations are extended to possess the lattice symmetry of a FCC
lattice. Each of the equations takes the same form as the discrete formula of the modified KP
hierarchy [5] (see the appendix). The equations take the following form:

4∑
j,k,l=1

1
2εijklzklfklgj = 0 i = 1, 2, 3, 4. (4)

Where, εijkl is the Levi–Civita tensor, and small indices on f and g increase the variable
corresponding to the index by one.

For example,

g1 = g(k1 + 1, k2, k3, k4) f12 = f (k1 + 1, k2 + 1, k3, k4)

f11 = f (k1 + 2, k2, k3, k4).
(5)

In our previous paper I called these equations the symmetric LBTE.
The symmetric LBTE can be related to the fundamental regular polyhedrons in the FCC

lattice, when one suitably arranges these equations. The fundamental regular polyhedrons in
the FCC lattice are an octahedron and two tetrahedrons. There are two such arrangements,
one of which is as follows:


0 z34f34 −z24f24 z23f23

−z34f34 0 z14f14 −z13f13

z24f24 −z14f14 0 z12f12

−z23f23 z13f13 −z12f12 0






g1

g2

g3

g4


 = 0. (6)

Another arrangement is to construct the matrix and vector elements with g and f . In both of
the arrangements, f and g in the matrix elements are on the vertices of an octahedron. On the
other hand, each g and f in the vector elements are on the vertices of a tetrahedron dual to one
another. Note that the arrangements make the lattice symmetry of the equations manifest.

One should also note the following. The FCC lattice is a root lattice of the A3-type Lie
group, and the two tetrahedrons and one octahedron are weight diagrams of three fundamental
representations of the A3-type Lie group. This implies that one can determine the regular
polyhedrons and proper lattice for the discrete formula, by comparing the dimensions of the
equation and symmetric groups corresponding to the hierarchy.

In what follows, I show that symmetric LBTE generate the Bäcklund transformation
successfully. Here, ‘successfully’ means the following: whenever f satisfies the discrete KP
equation, the symmetric LBTE can be solved for g, and the solution solves the discrete KP
equation automatically.

First, both f and g in the symmetric LBTE satisfy the discrete KP equation when they
satisfy the symmetric LBTE. To show this, we consider equation (6) as four linear equations to
be solved for four g values. These four linear equations can only be solved if the determinant
of the coefficient matrix vanishes. In this case, one can use the fact that determinant of the
antisymmetric matrix is the square of a Pfaffian. This fact leads the condition to the following
compact form:

Det(aij ) = (Pfaff(aij ))
2

= (z12z34f12f34 − z13z24f13f24 + z14z23f14f23)
2 = 0. (7)

This is simply the discrete KP equation. Now, one can exchange the roles of f and g,
by translating each equation in (6), so that g also satisfies the discrete KP equation. This
explanation depends essentially on the arrangement of the symmetric LBTE.
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Second, the symmetric LBTE can be solved for g whenever f satisfies the discrete
KP equation. This fact and the first statement show that symmetric LBTE generate the
Bäcklund transformation successfully. However, it requires a little more consideration. In fact,
consistency conditions other than the determinant-type consistency condition arise as follows.
Consider that the determinant-type consistency condition is already satisfied. Then, since the
rank of the coefficient matrix is 2, two out of four equations in (6) remain independent. I chose
two such equations as the first two equations in (6). For simplicity, I express the equations
using the variables p, q, r in (3):

1 : z34frgq − z24fqgr + z23fqrg = 0

2 : −z14fpgr + z13fprg + z34frgp = 0.
(8)

These two equations provide several methods to obtain g on one point from g on other points.
The value of g obtained needs to be independent of the method chosen. For example, in
figure 1, one can obtain the value of g(H) from g(A), g(B), g(C), according to the following
two procedures:

1 : g(A), g(B)
1→ g(F )

g(B), g(C)
1→ g(G)

2→ g(F ), g(G) → g(H)

2 : g(A), g(B)
2→ g(D)

g(B), g(C)
2→ g(E)

1→ g(D), g(E)
1→ g(H). (9)

One can evaluate the value of g on one point from the values of g on two points by using the
equation corresponding to the number given over the arrow (8). Here, the arrow represents
that process. After some calculation, the two procedures lead to the following expressions for
g(H):

1 : g(H) = g(A)
z14z24fpqfqr

z34z34fqrfrr

+g(C)
z31z32fpqrfqr

z34z34fqrfrr
+ g(B)

(
z14z32fpqfqrr

z34z34fqrfrr
+
z31z24fpqrfq

z34z34fqrfr

)

2 : g(H) = g(A)
z14z24fpqfpr

z34z34fprfrr

+g(C)
z31z32fpqrfpr

z34z34fprfrr
+ g(B)

(
z24z31fpqfprr

z34z34fprfrr
+
z32z14fpqrfp

z34z34fprfr

)
. (10)

These two expressions for g(H) must coincide. By equating the coefficients of g(B), one can
express the condition as follows:

fpqfpqr

z2
34fqrfpr

× (e∂r − 1)

(
Discrete KP

frfpq

)
= 0. (11)

Here, e∂i acts on arbitrary functions from the left-hand side and increases the variable
corresponding to the index i by one in the function. In the equation discrete KP expresses the
right-hand side of equation (1). The coefficients of g(A), g(C) automatically coincide. Thus,
in this case, the condition is satisfied if f satisfies the discrete KP equation.

However, this compatibility condition guarantees the existence of the solution of g to the
symmetric LBTE. To show this, I first put the initial value of g on the plane p + q = c. Here
c is arbitrary constant. Using the two equations in (10) independently, one can obtain the g
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Figure 1. Compatibility condition for discrete KP equation.

values on the plane p + q = c + 1. To make the value of g on the plane p + q = c + 1 unique,
I impose the following condition on the initial value of g:

−z24fpqgpr + z23fpqrgp

z34fpr
= −z14fpqgqr + z13fpqrgq

z34fqr
. (12)

If the compatibility condition is satisfied, this condition is also satisfied by g on the
plane p + q = c + 1. Therefore, one can inductively construct g on all lattice points, if the
compatibility condition is satisfied. One can conclude that there exists at least one solution of
g for the symmetric LBTE with f being a solution to the discrete KP equation.

3. The BKP and fermionic BKP hierarchies case

The lowest-dimension discrete formulae belonging to the BKP and the fermionic BKP
hierarchies are known to be as follows [3, 4, 6] (see the appendix):

a12b23a31f1f23 + a12a23b31f2f13 + b12a23a31f3f12 + b12b23b31ff123 = 0. (13)

Here, aij and bij are constant coefficients, and can be expressed as

BKP aij = zi + zj bij = zi − zj

fermionic BKP aij = 1 bij = zi − zj
(14)

respectively. Here, zi(i = 1, 2, 3) are arbitrary complex constants. The equation is called the
discrete BKP equation, for the first choice of coefficient in (14). However, I call the equation
the discrete BKP equation for both cases, neglecting the difference between the coefficients.

By considering the modified BKP hierarchy and the modified fermionic BKP hierarchy [3,
6], one can obtain the LBTE for the equations. Collecting the discrete formulae which depend
on the variables appearing in the discrete BKP equation, in the modified BKP hierarchy, the
following three equations can be obtained (see the appendix):

aij (fjgi − figj ) = bij (fgij − fijg) i, j = 1, 2, 3 i �= j. (15)

The discrete BKP equation is a three-dimensional equation and connects f at eight points.
Thus the cube may become a proper regular polyhedron for the discrete BKP equation. Indeed,
when the three variables p, q, r are considered to be orthogonal, the equation takes the form
of the summation of products of f on one vertex of the cube and another f on the opposite
side vertex. By joining cubes one obtains a simple cubic lattice. Therefore, I argue that the
simple cubic lattice is the proper lattice for the discrete BKP equation. Note that a cube and
simple cubic lattice are obtained as a weight diagram of a fundamental representation and a
root lattice for the B3-type Lie group, respectively.

On the other hand each of the equations in the LBTE connects f and g on a square. It
does not change its form under the exchange of f and g.
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As in the case of the discrete KP equation, the discrete BKP equation appears as the
consistency condition for the LBTE, by arranging the LBTE in a symmetric form. In a simple
cubic lattice, the fundamental regular polyhedron is a cube. Thus such symmetric equations
may connect f and g on a cube. Indeed, by collecting equations in the LBTE corresponding
to six squares of a cube, one can make such equations. These equations do not take the matrix
times vector form. Thus the determinant-type consistency condition does not arise in this
case. However, the compatibility condition may arise because one cube contains two parallel
squares. Indeed, there are three ways to obtain g123 from g, g1, g2, g3 by using the following
equations:

1 : g, g1, g2 → g12

g, g2, g3 → g23 g2, g12, g23 → g123

2 : g, g2, g3 → g23

g, g1, g3 → g13 g3, g23, g13 → g123

3 : g, g1, g2 → g12

g, g1, g3 → g13 g1, g12, g13 → g123. (16)

After some calculation these procedures lead to the following expressions of g123:

1 : g123 = g × 0 + g1

(
a31a12f23

−b31b12f

)
+ g2

(
a31a12f23f1

b31b12f2f
− a13a23f12f3

b13b23f2f
+
f123

f2

)

−g3

(
a13a23f12

b31b23f

)

2 : g123 = g × 0 − g1

(
a31a12f23

b31b12f

)
− g2

(
a12a23f13

b12b23f

)

+g3

(
a12a23f13f2

b12a23f3f
+
a12a31f23f1

b12b31f3f
+
f123

f3

)
. (17)

These three expressions need to coincide. The condition becomes just the discrete BKP
equation for f , after equating the coefficients of g, g1, g2, g3.

In this case, each equation in the LBTE does not change it’s form under the exchange of
f and g. This means that g also needs to the satisfy the discrete BKP equation, to be able to
solve the LBTE for f . Therefore, the LBTE can be solved for g only when f satisfies the
discrete BKP equation, and the solution also satisfies the discrete BKP equation automatically.

To verify the existence of the solution of g to the LBTE, I construct a surface on which
the initial value of g is placed and move the surface, as before. From the structure of the
LBTE, such surface turns out to be constructed from the two planes k1 + k2 + k3 = c and
k1 + k2 + k3 = c + 1. Here c is an arbitrary integer. By using three equations in the LBTE
independently, one can obtain the value of g on k1 + k2 + k3 = c + 2. Thus, conditions to make
these procedures equivalent need to be imposed on the initial value of g on the two planes
k1 + k2 + k3 = c and k1 + k2 + k3 = c + 1:

f123

f3
g3 +

a12

b12f3
(b12f12g13 − f13g12) = f123

f1
g1 +

a23

b23f1
(b23f13g12 − f12g13)

= f123

f2
g2 +

a31

b31f2
(b23f12g23 − f23g12). (18)

These conditions require no consistency condition. Namely one can find the initial values
that satisfy these conditions. Such initial values of g provides g on k1 + k2 + k3 = c + 2.
Thus, by showing g on k1 + k2 + k3 = c + 1 and k1 + k2 + k3 = c + 2 automatically satisfies
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Figure 3. Compatibility condition for discrete BKP equation.

condition (18), one can verify the existence of the solution of g to the LBTE recursively. That
condition becomes just the compatibility condition. As a consequence, one can verify that
there is at least one solution of g for the LBTE whenever f satisfies the discrete BKP equation.

4. The DKP hierarchy case

The lowest-dimensional discrete formulae which belong to the DKP hierarchy [3] are the
following two equations:

z14z23f23f14 − z13z24f13f24 + z12z34f12f34 − z12z13z14z23z24z34f1234f = 0

z23z24z34f234f1 − z13z14z24f134f2 + z12z14z24f124f3 − z12z13z23f123f4 = 0
(19)

where zijk = zij zjkzki . In these equations, f represents the τ -function for the DKP hierarchy,
but some variable transformation is performed (see the appendix). We call these equations
discrete DKP equations.

I first seek the regular polyhedrons and proper lattice for these equations. In this case,
one cannot produce such figures, since the equations are defined on a four-dimensional lattice
space. However, consideration in the previous cases suggests that one can find it by considering
representations of theD4-type Lie group. Namely, the regular polyhedrons may be obtained as
the weight diagrams of fundamental representations for the D4-type Lie group, and the proper
lattice may be the root lattice for the group. The Dynkin diagram for the D4-type Lie group is
shown in figure 2.
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The root vectors corresponding to the indices in the figure can be represented in Cartesian
coordinates as follows:

α1 = (1,−1, 0, 0) α2 = (0, 1,−1, 0)

α3 = (0, 0, 1.− 1) α4 = (0, 0, 1, 1).
(20)

In this choice of coordinate, weight diagrams of three fundamental representations
corresponding to Dynkin indices [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] become the following three
four-dimensional regular 16-hedrons:

[1, 0, 0, 0] [0, 0, 1, 0] [0, 0, 0, 1]

(1, 0, 0, 0) (1, 1, 1, 0) (1, 1, 1, 1)

(0, 1, 0, 0) (1, 1, 0, 1) (1, 1, 0, 0)

(0, 0, 1, 0) (1, 0, 1, 1) (1, 0, 1, 0)

(0, 0, 0, 1) (0, 1, 1, 1) (1, 0, 0, 1) (21)

(−1, 0, 0, 0) (1, 0, 0, 0) (0, 1, 1, 0)

(0,−1, 0, 0) (0, 1, 0, 0) (0, 1, 0, 1)

(0, 0,−1, 0) (0, 0, 1, 0) (0, 0, 1, 1)

(0, 0, 0,−1) (0, 0, 0, 1) (0, 0, 0, 0).

Two discrete DKP equations connect f on [0, 0, 1, 0]-type and [0, 0, 0, 1]-type regular 16-
hedrons, respectively. Therefore, the proper lattice for the discrete DKP equations turns out
to be the root lattice for the D4-type Lie group.

Collecting the discrete formulae that depend on variables arising in the discrete DKP
equations, in the modified DKP hierarchy [3], one can obtain the following eight linear
equations: ∑

jkl

( 1
2εijklzklfklgj + 1

6zjklfgjkl) = 0

∑
jkl

( 1
2εijklzjkflgjk + 1

6zjklfjklg) = 0.
(22)

In each of the equations in (22), f and g are defined on two tetrahedrons dual to each other.
Eight tetrahedrons arise in both equations of (22). We study how these tetraherons appear in the
root lattice for the D4-type Lie group, in order to arrange these equations in symmetric form.
There are 24 tetrahedrons in the root lattice for theD4-type Lie group. Three regular 16-hedrons
in (21) contain 16 tetrahedrons. The eight tetrahedrons arising in (22) are the tetrahedrons
which are simultaneously contained in the [0, 0, 1, 0] and [0, 0, 0, 1] tetrahedrons. Therefore,
by arranging the equations into the form in which g is on the [0, 0, 1, 0] or [0, 0, 0, 1] regular
16-hedrons, the symmetric arrangements may be obtained. In fact, in each case, f turns out to
be on the [0, 0, 0, 1] and [0, 0, 1, 0] regular 16-hedrons, respectively. Moreover, the equations
can be summarized in the regular matrix times vector form:


0 z34f34 z42f24 z23f23 z234f 0 0 0
z34f34 0 z41f14 z13f13 0 z341f 0 0
z24f24 z41f14 0 z12f12 0 0 z412f 0
z23f23 z31f13 z12f12 0 0 0 0 z123f

z234f1234 0 0 0 0 z34f34 z42f24 z23f23

0 z341f1234 0 0 z34f34 0 z41f14 z13f13

0 0 z412f1234 0 z24f24 z41f14 0 z12f12

0 0 0 z123f1234 z23f23 z31f13 z12f12 0



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×




g1

g2

g3

g4

g234

g134

g124

g123




= 0 (23)




0 z13f4 z41f3 z341f134 z34f1 0 0 0
z12f4 0 z41f2 z412f124 0 z24f1 0 0
z12f3 z31f2 0 z123f123 0 0 z23f1 0
z34f134 z42f124 z23f123 0 0 0 0 z234f1

z34f234 0 0 0 0 z13f123 z41f124 z341f2

0 z24f234 0 0 z12f123 0 z41f134 z412f3

0 0 z23f234 0 z12f124 z31f134 0 z123f4

0 0 0 z234f234 z34f2 z42f3 z23f4 0




×




g12

g13

g14

g

g34

g24

g23

g1234




= 0. (24)

These arrangements make the lattice symmetry of the equations manifest.
In this case, the symmetric arrangements induce two determinant-type consistency

conditions, since they take the matrix times vector form. After some calculations one finds
that these two determinants are just the fourth power of two discrete DKP equations:

(z14z23f23f14 − z13z24f13f24 + z12z34f12f34 − z12z13z14z23z24z34f1234f )
4 = 0

(z23z24z34f234f1 − z13z14z24f134f2 + z12z14z24f124f3 − z12z13z23f123f4)
4 = 0.

(25)

Thus, two discrete DKP equations arise as consistency conditions for the LBTE. One
concludes that when one solves the equations for g, provided f is a solution to the discrete
DKP equation, g also satisfies the discrete DKP equations, since the equations are invariant
under the exchange of f and g.

One can prove the existence of the solution for g to the LBTE with f being a solution to the
discrete DKP equations, by using the same method as in the previous cases. Namely, one can
consistently evaluate g from the initial value of g defined on some surface, whenever f satisfies
discrete DKP equations. First, I gather equations which remain independent after imposing the
determinant-type consistency conditions. To do this, I concentrate on equations (23). When
the determinant-type consistency condition for these equations is imposed, the rank of the
coefficients matrix becomes 4. Thus, out of eight equations in (22), four equations remain
independent. I take four such equations as follows:

0 : −z34f134g12 − z24f124g13 − z23f123g14 + z24z34z23f1g1234 = 0

1 : z23f234g14 − z13f134g24 + z12f124g34 − z12z23z13f4g1234 = 0

2 : −z24f234g13 + z14f134g23 − z12f123g34 + z14z24z12f3g1234 = 0

3 : z34f234g12 − z14f124g23 + z13f123g24 − z14z34z13f2g1234 = 0.

(26)
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However, these equations become dependent in (24) when the determinant-type
consistency condition is imposed. Namely, one equation out of four becomes a summation of
the other three equations when f satisfies the discrete DKP equations. I choose the latter three
equations in (26) as three such equations.

Each of the three equations allow one to evaluate, from g on k1 + k2 + k3 + k4 = c, g on
k1 + k2 + k3 + k4 = c + 1. However, the conditions for g obtained by each of the LBTE to
coincide, need to be imposed on the initial value of g. The conditions become

z23f234g14 − z13f134g24 + z12f124g34

−z12z23z14f4
= −z24f234g13 + z14f134g23 − z12f123g34

z14z24z12f3

= z34f234g12 − z14f124g23 + z13f123g24

−z14z34z13f2
. (27)

Each equality represents the coincidence of g1234 obtained by the three equations in (26).
These conditions require no more consistency conditions. Hence one can recursively construct
the solution of g to the LBTE, when the obtained g also satisfies the same condition. This
is the case, when f satisfies the discrete DKP equations. I show this for the first equality in
equation (27), as an example. It can be shown by comparing the two following procedures:

g(B), g(A), g(C) → g12

g(A), g(D), g(E) → g23 g12, g23, g34 → g1234

g(E), g(G), g(H) → g34

g(B), g(A), g(F ) → g14

g(A), g(D), g(G) → g24 g14, g24, g34 → g1234

g(C), g(E), g(H) → g34.

(28)

where,

A = (0, 0, 0, 0) B = (1,−1, 0, 0) C = (0,−1, 1, 0)

D = (−1, 1, 0, 0) E = (−1, 0, 1, 0) F = (0,−1, 0, 1) (29)

G = (−1, 0, 0, 1) H = (−1,−1, 1, 1).

Here, I substitute 1 into c for simplicity, without lose of generality. In these procedures, the
value of g(0, 0, 1, 1) can be obtained by using three equations in (26) independently. This
requires conditions, in the form of (27), to be imposed on g on the plane k1 +k2 +k3 +k4 = −1.
By using these conditions, one can omit g(F ) and g(C) in (28). Equating the coefficients of
the remaining five g on the plane k1 + k2 + k3 + k4 = −1, one can convert the condition into

g(G) :
f (0, 1, 1, 1)f (1, 0, 0, 0)

z2
14z12z13z23z14z24z34f (−1, 0, 1, 1)f (0, 0, 0, 1)

×
[
(1 − e−∂1−∂2)

(
z14z34z13f2f134 − z14z24z12f3f124 + zpqz13z23f123f4

f234f1

)]

= 0 (30)

g(E) :
f (0, 1, 1, 1)f (1, 0, 0, 0)

z14z24z34z12z
2
13z23f (−1, 0, 0, 0)f (0, 0, 1, 0)

×
[
(1 − e−∂1−∂2)

(
z13z14z34f2f134 + z12z14z24f124f3 − z12z13z23f4f123

f1f234

)]

= 0 (31)

g(A) :
f (0, 1, 1, 1)f (1, 0, 1, 1)

z14z24z
2
12z23z13f (0, 0, 0, 1)f (0, 0, 1, 0)
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×
[
(e−∂1 − e∂2)

(
z14z23f14f23 − z24z13f13f24 + z34z12f12f34

ff1234

)]

+
f (0, 1, 1, 1)f (1, 0, 0, 0)f (−1, 0, 1, 1)

z2
14z24z12z

2
13z23f (−1, 0, 0, 0)f (0, 0, 0, 1)f (0, 0, 1, 0)

×
[
(1 − e−∂1−∂2)

(−z14z24z12f124f3 + z12z23z13f123f4 + z14z34z13f134f2

f1f234

)]

= 0. (32)

All these equations are satisfied if f satisfies two discrete DKP equations. The equality of
equations (2) and (3) or (1) and (3) in (27), can be shown by using a similar approach. Thus,
it is shown that, whenever f satisfies the discrete DKP equations, there is at least one solution
of g to the LBTE.
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Appendix A. Discrete formula for the integrable hierarchy

The integral identity known as the bilinear identity [5, 6], leads all the equations satisfied by
the τ -function of the integrable hierarchy. The discrete formulae that appear in this paper are
also obtained from this identity. In this appendix, for completeness, I briefly explain the way
to obtain the discrete formulae from the bilinear identities.

A.1. Bilinear identity for the KP hierarchy and the modified KP hierarchy

The bilinear identity for the KP hierarchy is as follows [5]:∮
dz

2π i
eξ(x,z)−ξ(x

′,z)τ (x − ε(z−1))τ (x ′ + ε(z−1)) = 0. (33)

Here, x and x ′ are infinite-dimensional vectors embodying an infinite number of variables in
the KP hierarchy:

x = (x1, x2, x3, . . .). (34)

These variables are continuous variables in the sense that they become variables for differential
equations contained in the KP hierarchy. ε(z) is a vector represented as

ε(z) = (z, 1
2z

2, . . .) (35)

ξ is a function of x and z represented as

ξ(x, z) =
∞∑
n=1

1

n
xnz

n. (36)

By choosing x − x ′ properly, one can obtain all the equations satisfied by the τ -function for
the KP hierarchy.

An infinite number of discrete variables are defined through the Miwa transformation [5]
from continuous variables (34):

∂

∂ki
=

∞∑
n=1

1

n

∂

∂xn
zni . (37)

Here, zi are arbitrary complex constants, and discrete variables exist for each different zi .
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The difference equations contained in the KP hierarchy depend on these variables.
The difference equation itself is obtained by expanding the bilinear identity, after

substituting the appropriate summation of ε(z1), ε(z2), . . . into x − x ′. The dimension of
the equations increases with the number of terms contained in the summation. The most
simple nontrivial equation within it is obtained when one substitutes ε(z1) + ε(z2) + ε(z3) into
x − x ′. In this case, after some calculations one obtains the following equation:

z1z23τk1τk2k3 + z2z31τk2τk3k1 + z3z12τk3τk1k2 = 0. (38)

Hence, the lowest-dimensional discrete equation contained in the KP hierarchy is a three-
dimensional equation. Another three-dimensional equation is obtained, when one substitutes
ε(z1) + ε(z2) + ε(z3) − ε(z4) into x − x ′. This is the discrete KP equation employed in this
paper. Replacing zi4 by zi(i = 1, 2, 3), after suitable variable transformation, one can convince
oneself that the discrete KP equation is the same as equation (38).

The bilinear identity for the modified KP hierarchy can be obtained as a modification of
the KP hierarchy’s one [5]. It takes the following form:

Resz=0 dz zeξ(x,z)−ξ(x
′,z)τ ′(x − ε(z))τ (x ′ + ε(z)) = 0. (39)

By substituting arbitrary sums of three out of ε(z1), ε(z2), ε(z3), ε(z4) into x− x ′ this identity
leads to four equations the same as those in the LBTE for the discrete KP equation.

A.2. Bilinear identity for the BKP hierarchy and the modified BKP hierarchy

The τ -function for the BKP hierarchy satisfies the following bilinear identity [5]:

Resz=0 dz
1

z
eξ̃ (x,z)−ξ̃ (x

′,z)τ (x − 2ε̃(z−1))τ (x + 2ε̃(z−1)) = τ(x)τ (x ′). (40)

Here, x, x ′, ε̃ and ξ̃ are the same as those for the KP hierarchy except for the absence of
variables of even number indices. i.e.

x = (x1, x3, x5, . . .) ε̃(z) = (z, 1
3z

3, . . .)

ξ̃ (x, z) =
∞∑
n=1

1

2n− 1
x2n−1z

2n−1.
(41)

By expanding this bilinear formula, one can obtain all the equations contained in the BKP
hierarchy.

The dependent variables for discrete equations which belong to the BKP hierarchy are
difined through the following variable transformation:

∂

∂ki
= 2

∞∑
n=1

1

2n− 1

∂

∂x2n−1
z2n−1
i . (42)

The discrete equations themselves are obtained by substituting the summation of
ε̃(z1), ε̃(z2), ε̃(z3) . . . . into x − x ′. The most simple nontrivial equation is obtained when
one substitutes ε̃(z1) + ε̃(z2) + ε̃(z3) into x − x ′. The equation is the discrete BKP equation.

The bilinear identities for the modified BKP hierarchy can be obtained as a modification
of those for the BKP hierarchy and take the following form [6]:

Resz=0 dz
1

z
eξ̃ (x,z)−ξ̃ (x

′,z)τ ′(x − 2ε̃(z−1))τ (x + 2ε̃(z−1)) = 2τ(x)τ ′(x ′)− τ ′(x)τ (x). (43)

By substituting the summation of two of ε̃(z1), ε̃(z2), ε̃(z3) into x − x ′, one can obtain
the LBTE for the discrete BKP equation used in this paper.
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A.3. Bilinear identity for the fermionic BKP hierarchy

The bilinear identity for the fermionic BKP hierarchy is [3]
1
2 ((−1)n+m − 1)τn(x)τm(x

′) + Res dz zn−m−2eξ(x,z)−ξ(x
′,z)τn−1(x − ε(z))τm+1(x

′ + ε(z))

+Res dz zm−n−2eξ(x,z)−ξ(x
′,z)τn+1(x + ε(z))τm−1(x

′ − ε(z)) = 0. (44)

where x, x ′, ε(z) and ξ(x, z) are same as those of the KP hierarchy, and n represents the charge
in the free fermion description [5, 6]. Variables for the discrete equation are also the same as
those of the KP hierarchy. All the equations which belong to the BKP hierarchy can be obtained
by appropriately choosing x − x ′ and n−m. The most simple nontrivial discrete equation is
obtained when x − x ′ = ε(z1) + ε(z2) and n−m = 1 or 3, and is

z2τn+1(p + 1, q)τn+2(p, q + 1) + z1τn+1(p, q + 1)τn+2(p + 1, q)

+z12τn+1(p, q)τn+2(p + 1, q + 1)

+z12z1z2τn(p, q)τn+3(p + 1, q + 1) = 0. (45)

This equation is a three-dimensional equation when one considers n as one variable. To place
the three variables on an equal footing, I transform them as follows:

p = k1 q = k2 n = p + q. (46)

In these variables, the equation is expressed as

z2f1f23 + z1f2f13 + z12f3f12 + z12z2z1ff123 = 0. (47)

This equation a is three-dimensional discrete equation. However, another three-dimensional
equation can be obtained when x − x ′ = ε(z1) + ε(z2)− ε(z3) and n−m = 1. The equation
obtained is the discrete fermionic BKP equation employed in this paper.

The bilinear identity for the modified fermionic BKP hierarchy is

Res dz zn−m−2eξ(x,z)−ξ(x
′,z)τ ′

n−1(x − ε(z))τm+1(x
′ + ε(z))

+Res dz zm−n−2eξ(x,z)−ξ(x
′,z)τ ′

n+1(x + ε(z))τm−1(x
′ − ε(z))

= − 1
2 ((−1)n+m − 1)τ ′

n(x)τm(x
′) + τn(x)τ

′
m(x

′). (48)

By substituting arbitrary sums of two of ε(z1), ε(z2), ε(z3) into x − x ′, one can obtain three
equations in the LBTE for the discrete fermionic BKP equation.

A.4. Bilinear identity for the DKP hierarchy

The bilinear identity for the DKP hierarchy is as follows [3]:

Resz=0 dz zn−m−2eξ(x,z)−ξ(x
′,z)τn−1(x − ε(z−1))τm+1(x

′ + ε(z−1))

+Resz=0 dz zm−n−2e−ξ(x,z)+ξ(x ′,z)τn+1(x + ε(z−1))τm−1(x
′ − ε(z−1)) = 0. (49)

Here, n represents the charge in the free fermion description. x, x ′, ε and ξ are the same as
the KP hierarchy. The dependent variables for the discrete equations which belong to the
DKP hierarchy are also the same as the KP hierarchy. All the equations which belong to
the DKP hierarchy can be obtained by expanding this identity, when one chooses n − m and
x − x ′ appropriately. The lowest-dimensional discrete equations within it are obtained when
x − x ′ = ε(z1) + ε(z2) + ε(z3) and n − m = 2, 4 or x − x ′ = ε(z1) + ε(z2) − ε(z3) and
n − m = 0, 2. However, two of these equations overlap with other two equations. As a
consequence, the following two equations turn out to be the lowest-dimensional discrete DKP
equations:
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zpzqrfn(p, q + 1, r + 1)fn(p + 1, q, r) + zqzrpfn(p + 1, q, r + 1)fn(p, q + 1, r)

+zrzpqfn(p + 1, q + 1, r)fn(p, q, r + 1)

−zpzqzrzpqzqrzrpfn+2(p + 1, q + 1, r + 1)fn−2(p, q, r) = 0

zqzrzqrfn−1(p, q + 1, r + 1)fn−3(p + 1, q, r) + zrzpzrpfn−1(p + 1, q, r + 1)fn−3(p, q + 1, r)

+zpzqzpqfn−1(p + 1, q + 1, r)fn−3(p, q, r + 1)

+zpqzqrzrpfn−1(p + 1, q + 1, r + 1)fn−3(p, q, r) = 0. (50)

These equations are four-dimensional equations, considering n as one variable. To place the
four variables on an equal footing, I transform them as follows:

p = k1 q = k2 r = k3 n = k1 + k2 + k3 + k4. (51)

In these four variables, the equations take the following forms:

z1z23f23f14 − z13z2f13f24 + z12z3f12f34 − z12z13z1z23z2z3f1234f = 0

z23z2z3f23f1 − z13z1z2f134f2 + z12z1z2f124f3 − z12z13z23f123f4 = 0.
(52)

However, one can obtain other four-dimensional equations for the DKP hierarchy as in the
previous case. One of which is obtained when x − x ′ = ε(z1) + ε(z2) + ε(z3) − ε(z4) and
n − m = 2, and is the first equation in the discrete DKP equations employed in this paper.
Another one is obtained when x − x ′ = ε(z1) + ε(z2) + ε(z3) + ε(z4) and n − m = 4, and is
the second equation in the discrete DKP equation.

Modification of the bilinear identity for the discrete DKP equation leads to [3]

Resz=0 dz zn−m−2eξ(x,z)−ξ(x
′,z)τ ′

n−1(x − ε(z−1))τm+1(x
′ + ε(z−1))

+Resz=0 dz zm−n−2e−ξ(x,z)+ξ(x ′,z)τ ′
n+1(x + ε(z−1))τm−1(x

′ − ε(z−1))

= τn(x)τ
′
m(x

′). (53)

This identity is the bilinear identity for the modified DKP equation. By taking arbitrary
summations of three of ε(z1), ε(z2), ε(z3), ε(z4), one can obtain eight equations in the LBTE
for the discrete DKP equations.
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